Exercise 10

Use the Laplace transform method to solve the Volterra integral equations of the first kind:

$$
1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}-\sin x-\cos x=\int_{0}^{x}(x-t+1) u(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
\mathcal{L}\{f(x)\}=F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

According to the convolution theorem, the product of two Laplace transforms can be expressed as a transformed convolution integral.

$$
F(s) G(s)=\mathcal{L}\left\{\int_{0}^{x} f(x-t) g(t) d t\right\}
$$

Take the Laplace transform of both sides of the integral equation.

$$
\mathcal{L}\left\{1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\sin x-\cos x\right\}=\mathcal{L}\left\{\int_{0}^{x}(x-t+1) u(t) d t\right\}
$$

Use the fact that the Laplace transform is linear on the left side and apply the convolution theorem on the right side.

$$
\begin{aligned}
\mathcal{L}\{1\}+\mathcal{L}\{x\}+\frac{1}{2} \mathcal{L}\left\{x^{2}\right\}+\frac{1}{6} \mathcal{L}\left\{x^{3}\right\}-\mathcal{L}\{\sin x\}-\mathcal{L}\{\cos x\} & =\mathcal{L}\{x+1\} U(s) \\
\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{2}\left(\frac{2}{s^{3}}\right)+\frac{1}{6}\left(\frac{6}{s^{4}}\right)-\frac{1}{s^{2}+1}-\frac{s}{s^{2}+1} & =(\mathcal{L}\{x\}+\mathcal{L}\{1\}) U(s) \\
\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{s^{3}}+\frac{1}{s^{4}}-\frac{1}{s^{2}+1}-\frac{s}{s^{2}+1} & =\left(\frac{1}{s^{2}}+\frac{1}{s}\right) U(s)
\end{aligned}
$$

Solve for $U(s)$.

$$
\begin{aligned}
\left(\frac{1}{s^{2}}+\frac{1}{s}\right) U(s) & =\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{s^{3}}+\frac{1}{s^{4}}-\frac{s+1}{s^{2}+1} \\
(1+s) U(s) & =s+1+\frac{1}{s}+\frac{1}{s^{2}}-\frac{s^{3}+s^{2}}{s^{2}+1} \\
& =(s+1)+\frac{s+1}{s^{2}}-\frac{s^{2}(s+1)}{s^{2}+1} \\
U(s) & =1+\frac{1}{s^{2}}-\frac{s^{2}}{s^{2}+1} \\
& =\frac{1}{s^{2}}+\frac{1}{s^{2}+1}
\end{aligned}
$$

Take the inverse Laplace transform of $U(s)$ to get the desired solution.

$$
\begin{aligned}
u(x) & =\mathcal{L}^{-1}\{U(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} \\
& =x+\sin x
\end{aligned}
$$

